The team – which also included researchers at Rutgers University in New Jersey and Facebook’s AI lab in California – modified a type of algorithm known as a generative adversarial network (GAN), in which two neural nets play off against each other to get better and better results. One creates a solution, the other judges it – and the algorithm loops back and forth until the desired result is reached.

In the art AI, one of these roles is played by a generator network, which creates images. The other is played by a discriminator network, which was trained on 81,500 paintings to tell the difference between images we would class as artworks and those we wouldn’t – such as a photo or diagram, say.